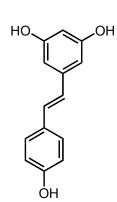
Total Synthesis of Resveratrol-Based Natural Products


&

Nucleophilic Carbene and HOAt Relay Catalysis in an Amide Bond Coupling

Anil Kumar Gupta
Group Meeting
12/14/2007

Resveratrol

- A phytoalexin(antibiotics) produced naturally by several plants when under attack by bacteria or fungi.
- In vivo and in vitro activity against inflammation, heart disease, aging, and cancer.
- Found in the skin of red grapes and is a constituent of red wine (~ 100μM).
- Absent in white wine and grape juice.
- Popular notion: it is supporter of "French Paradox".
 (the observation that the French suffer relatively low incidence of coronary heart disease, despite having a diet relatively rich in saturated fats.)

Resveratrol-Based Natural Products

OH
HO
$$\epsilon$$
-viniferin (8)

HO 3: pallidol

ОН

resveratrol trans-dehydrodimer (9)

Table 2. Diversity of the products obtained by the treatment of resveratrol (1) with peroxidases

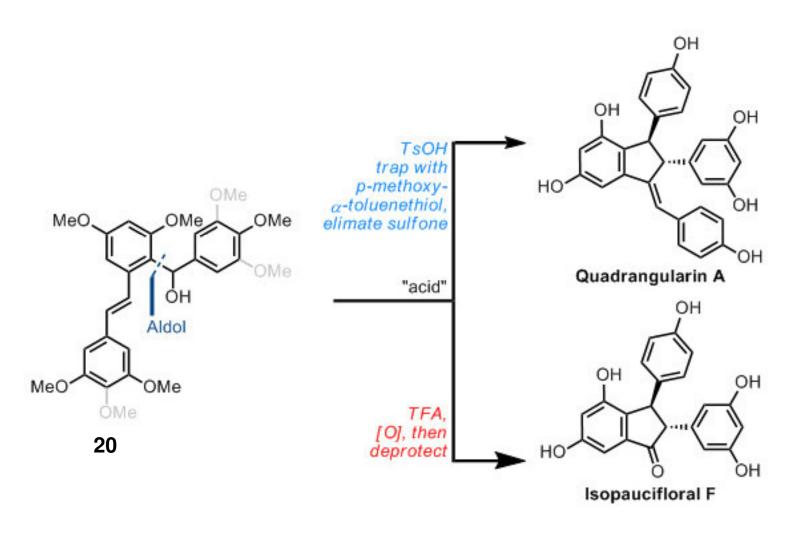
Origins of peroxidases	Solvent	11 (%)	12 (%)	20 (%)	21 (%)	
Glycine max	aq Acetone	21.4	7.2	1.8	_	
Arthromyces ramosus	aq Acetone	18.4	7.4	4.6	_	
Horseradish	aq Acetone	12.6	10.2	_	_	
Glycine max	aq EtOH	12.1	9.5	5.2	8.6	
Arthromyces ramosus	aq EtOH	13.1	5.0	4.6	8.2	

The percentage in this table means the 'degree of transformation (%DT)'. See Section 3.

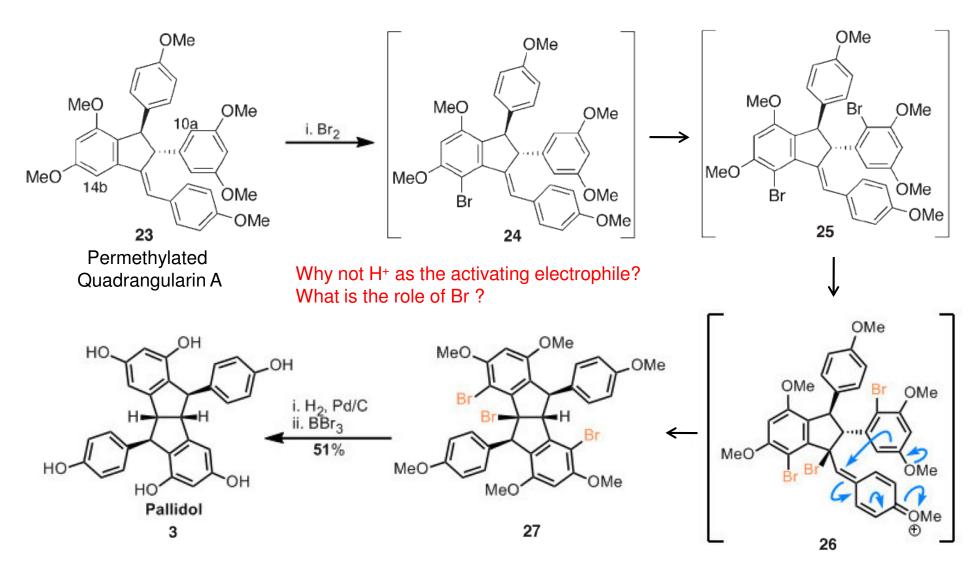
Low yields and Low selectivity

Quardrangularin A

Solution to Chemoselectivity Problem

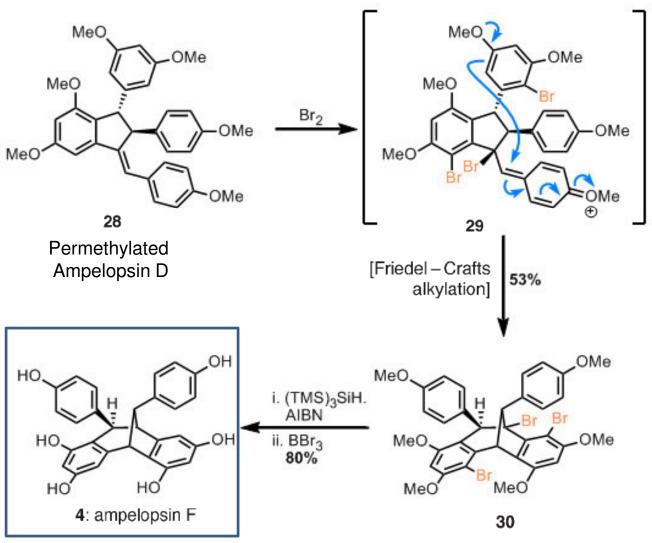

Solution to Chemoselectivity Problem

Hypothesis: Tri-aryl precursors can be lead to every family member (may be by altering the reagents and reaction conditions)


Total Synthesis of Paucifloral F

Total Synthesis of Ampelosin D & Isoampelopsin D

Total Synthesis of quadrangularin A and Isopaucifloral F



Total Synthesis of Pallidol

Snyder et.al. ACIEE 2007, 46, 8186

Total Synthesis of Ampelopsin F

Snyder et.al. ACIEE 2007, 46, 8186

Total Synthesis of analogue of Hemsleyanol E

Total Synthesis of analogue of Hemsleyanol E

Nucleophilic Carbene and HOAt Relay Catalysis in an Amide Bond Coupling

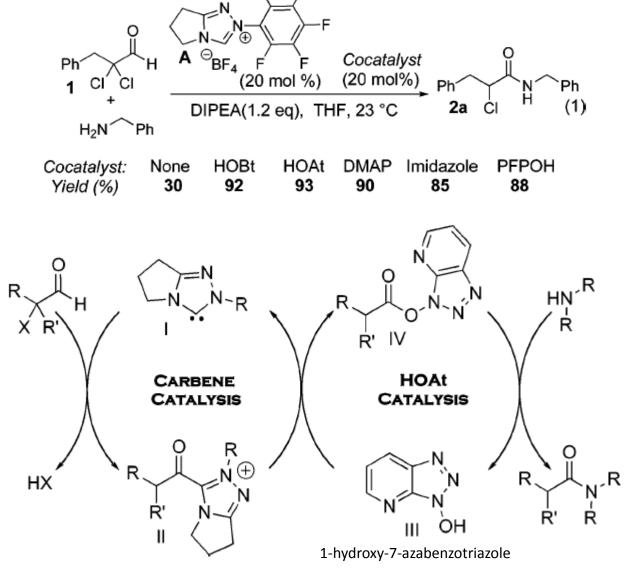
- Conventional amide bond formation utilizes acids and amines as coupling partners and relies on stoichiometric activating agents for the acid functionality.
- Only two amines are reported so far for catalytic amidation using NHCs as catalyst.

$$Ph \longrightarrow H \longrightarrow Ph$$

$$20 \text{ mol } \%$$

$$1 \text{ equiv } \text{NuH}$$

$$1 \text{ equiv } \text{Et}_{3}\text{N}$$

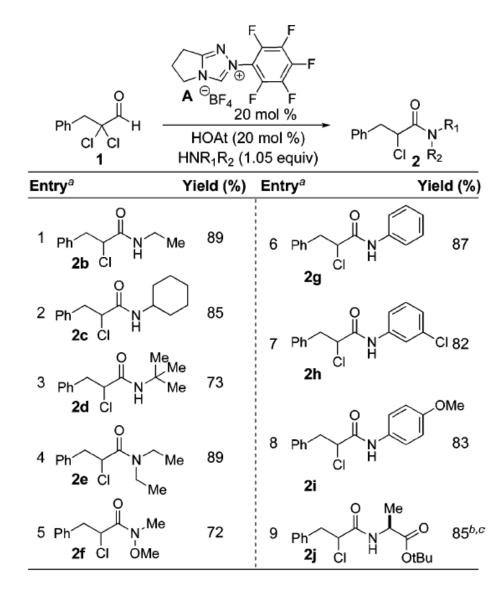

$$\text{toluene, } 25 \text{ °C}$$

$$Entry^{a} \quad \text{Nucleophile} \quad \text{Time (h)} \quad \text{Product} \quad \text{Yield (\%)}$$

$$7 \longrightarrow NH_{2} \qquad 24 \longrightarrow Ph \longrightarrow NH_{2} \qquad 91$$

Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. *J. Am. Chem. Soc.* **2004**, *126*, 9518. Scheidt, K. A. *Org. Lett.* **2005**, *7*, 905.

Reaction and its Proposed Catalytic Cycle


Rovis, T.; Vora, H. U. J. Am. Chem. Soc. 2007, 129, 13796.

Carbene Mechanism

$$\bigoplus_{\text{Et}_3\text{NH}} X \bigoplus_{\text{R}} \bigoplus_{\text{N}} \bigoplus_{\text{R}} \bigoplus_{\text{N}} \bigoplus_{\text{R}} \bigoplus_{\text{N}} \bigoplus_{\text{R}} \bigoplus_{\text{N}} \bigoplus_{\text{R}} \bigoplus_{\text{N}} \bigoplus_{\text{R}} \bigoplus_{\text{R}} \bigoplus_{\text{R}} \bigoplus_{\text{N}} \bigoplus_{\text{R}} \bigoplus_{\text{R}}$$

Amine and α-haloaldehyde Substrate Scope

Figure 1. α-Haloaldehyde substrate scope.

Rovis, T.; Vora, H. U. J. Am. Chem. Soc. 2007, 129, 13796.

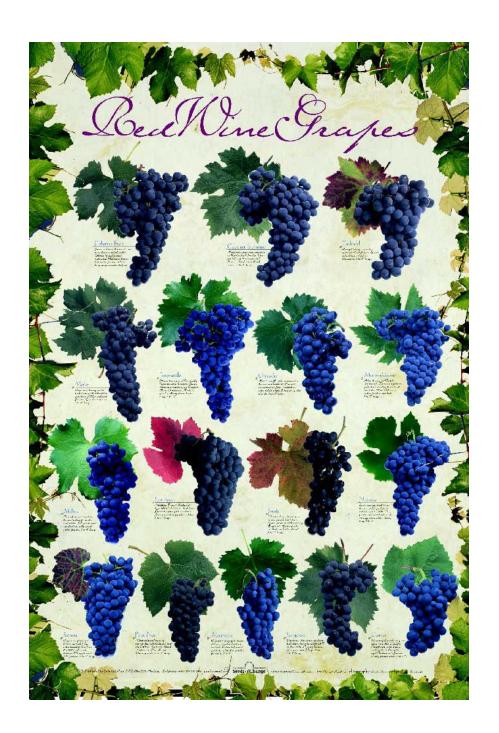
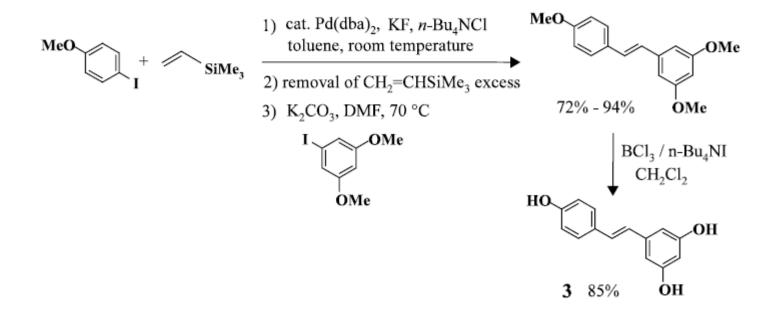

Atom-Economical Amidation

Table 2. Atom-Economical Amidation

Entry	Substrate	Product	Yield (%)	dr
1	Ph H (+)-6a Me	Ph N Ph	86ª	>19:1
2	Ph H (+)-6a Me	Ph N Me OtBu	75ª	15:1
3	Ph N H (+/-)-6b Me	Ph NH O N Ph	72ª	>19:1
4	EtO ₂ C H	EtO ₂ C N Pr	80 ^b	-
5	Ph H	Ph N Ph	82 ^b	-


Base is used in catalytic Amount

Proof of Mechanism: Use of Chiral Carbenes

a) CH₃OH, H₂SO₄, reflux; b) PhCH₂Br, K₂CO₃, DMF, RT; c) LiAlH₄, Et₂O, RT; d) SOCl₂, Et₃N, benzene, $0^{\circ}C \rightarrow RT$; e) PPh₃, xylene, reflux; f) Br₂, *tert*-butanol, RT; g) *n*BuLi, toluene, RT \rightarrow reflux; h) AlCl₃, PhNMe₂, CH₂Cl₂, $0^{\circ}C$

Synthesis of resveratrol

Synthesis of resveratrol

Synthesis of resveratrol

$$F_{3}C \longrightarrow S \longrightarrow R^{1} \longrightarrow F_{3}C \longrightarrow S \longrightarrow R^{2} \longrightarrow F_{3}C \longrightarrow G_{2}$$

$$G_{2} \longrightarrow G_{3}$$

$$G_{2} \longrightarrow G_{3}$$

$$G_{2} \longrightarrow G_{3}$$

$$G_{2} \longrightarrow G_{3}$$

$$G_{3} \longrightarrow G_{4}$$

$$G_{4} \longrightarrow G_{5}$$

$$G_{5} \longrightarrow G_{5}$$

$$G_{7} \longrightarrow G_{7}$$

$$G_{7} \longrightarrow G_{7} \longrightarrow G_{7} \longrightarrow G_{7}$$

$$G_{7} \longrightarrow G_{7} \longrightarrow G_{7} \longrightarrow G$$